TUD Dresden University of Technology, as a University of Excellence, is one of the leading and most dynamic research institutions in the country. TUD has established the Research Training Group "AirMetro - Technological & Operational Integration of Highly Automated Air Transport in Urban Areas" (RTG 2947), funded by the German Research Foundation (DFG). This interdisciplinary group, involving five faculties and the German Aerospace Centre (DLR), will conduct research on 11 research topics with 22 PhD candidates in the first funding period (05/2024 to 04/2029). The goal is to address the technical and social challenges of Advanced Air Mobility, considering ecological, economic, technological, and sociological factors. The RTG's structured doctoral program aims to train young researchers in highly automated, networked mobility, featuring international collaboration with mentors from the USA, Asia, and Europe. TUD and the RTG embodies a university culture that is characterized by cosmopolitanism, mutual appreciation, thriving innovation and active participation. For TUD diversity is an essential feature and a quality criterion of an excellent university. Accordingly, we welcome all applicants who would like to commit themselves, their achievements and productivity to the success of the whole institution.

The Research Training Group RTG 2947 "AirMetro", funded by the DFG, offers a position as Research Associate / PhD Student (m/f/x)
(subject to personal qualifications, employees are remunerated according to salary group E 13 TV-L)
starting as soon as possible. The position is limited to 48 months, max. until April 30, 2029. The period of employment is governed by the Fixed Term Research Contracts Act (Wissenschaftszeitvertragsgesetz - WissZeitVG). The position aims at obtaining further academic qualification (usually PhD).

Job ID: RTG2947-T6
Title: Development of Robust Motion trajectories under Consideration of Model and Data Uncertainty
Investigators: Prof. Michael Kaliske, Chair of the Institute for Structural Analysis and co-supervised by at least one additional professor plus an international tutor of the RTG
Requirements: very good university degree as Master of Science (M.Sc.) or Diplom-Ingenieur (Dipl.-Ing.) in civil engineering or mechanical engineering (or comparable) with deep knowledge in uncertainty quantification, structural analysis, advanced mathematics, modelling and simulation.

Description of the PhD topic: Small, highly automated aircrafts over populated areas rely on robust motion trajectories, considering uncertain input data. Sensor precision, fusion of multiple data sources and absence data due to difficult environmental conditions or technical defects require the modelling of vehicle states beyond deterministic models. The objective of this PhD thesis is to develop and apply appropriate polymorphic uncertainty models in order to continuously determine robust motion trajectories. The project aims to overcome drawbacks of probabilistic models by means of problem adapted data modelling and the application to realistic data scenarios.

Tasks: Independent and cooperative qualification through scientific research within one of the PhD study projects on offer; training in the technical tasks of the individual dissertation topics through study of the literature and in making the objectives more precise; working on the individual PhD study project with experimental, numerical, metrological or empirical focus in collaboration with other RTG members (fellow students and supervising professors); implementation of the planned research
program, evaluation and interpretation of the results and transferring them to a RTG internal exchange platform, elaboration and presentation of the state-of-the-art in the respective research fields; participation in lectures, workshops and summer schools according to the guidelines of the RTG curriculum; supporting scientific graduation work (Bachelor/Master/Diploma) in the subject-specific research field; regular reporting on research progress to the supervising professors; publishing the results of the research work individually and in concert with others; cooperative maintenance of exchange platforms (database, information pages, etc.); summarizing the results of the individual PhD study project in a dissertation within the due time of 4 years.

Successful candidates will work together with approx. 30 PhD candidates at the Chair of Structural Analysis and together with other chairs being part of the RTG.

General Requirements: We are looking for first-class graduates with expertise in the RTG-addressed doctoral subjects, high interdisciplinary desire to learn and willingness to cooperate, very good verbal and written English communication skills as well as the absolute determination to submit the dissertation after 4 years of research.

What we offer:

- **Pioneering Research Environment:** Shape the future of advanced air mobility through involvement in innovative drone-related projects that bridge technology, urban planning, material sciences, sensors and aviation. With the upcoming Smart Mobility Lab in Lusatia, Saxony, you will have access to state-of-the-art and extensive facilities for experiments. This includes a hall measuring 100x100x30 meters and outdoor space (available from 2026).

- **Cross-Disciplinary Collaboration:** Immerse yourself in a highly collaborative and interdisciplinary research environment, where you'll work alongside experts from fields such as engineering, data science, urban studies, and aerospace.

- **Skill Development:** Our extensive qualification concept goes beyond research, offering targeted training in drone technology, data analytics, regulatory aspects, project management, and leadership skills. This ensures you graduate not only as a specialist in your field but also as a well-rounded professional.

- **Global Networking:** Collaborate with our network of local and international partners, fostering connections that transcend geographical boundaries and enrich your academic and professional network. This includes a paid research stay abroad for three months.

- **Career Advancement:** Receive dedicated support for fellowship applications and tailored guidance for your career.

- **Quality of Life in Dresden:** Experience a high quality of life in Dresden, with its dynamic urban scene, relatively affordable living, rich cultural offerings, and vibrant nightlife.

Further questions regarding the open PhD positions can be discussed with the supervisor, Prof. Dr.-Ing. habil. Michael Kaliske (michael.kaliske@tu-dresden.de).

TUD strives to employ more women in academia and research. We therefore expressly encourage women to apply. The University is a certified family-friendly university and offers a Dual Career Service. We welcome applications from candidates with disabilities. If multiple candidates prove to be equally qualified, those with disabilities or with equivalent status pursuant to the German Social Code IX (SGB IX) will receive priority for employment.

Please submit your detailed application including a cover letter detailing your research interests stating the job-ID “RTG 2947-T6” along with your curriculum vitae, academic transcripts with marks, a letter of recommendation and your publications (if applicable) by **July 8, 2024** (stamped arrival date of the university central mail service or the time stamp on the email server of TUD applies), preferably via the TUD SecureMail Portal https://securemail.tu-dresden.de by sending it as a single pdf file to airmetro@tu-dresden.de or to: TU Dresden, RTG 2947, Herrn Prof. Dr.
Hartmut Fricke, Helmholtzstr. 10, 01069 Dresden, Germany. Please submit copies only, as your application will not be returned to you. Expenses incurred in attending interviews cannot be reimbursed.

Reference to data protection: Your data protection rights, the purpose for which your data will be processed, as well as further information about data protection is available to you on the website: https://tu-dresden.de/karriere/datenschutzhinweis.