TUD Dresden University of Technology, as a University of Excellence, is one of the leading and most dynamic research institutions in the country. Founded in 1828, today it is a globally oriented, regionally anchored top university as it focuses on the grand challenges of the 21st century. It develops innovative solutions for the world’s most pressing issues. In research and academic programs, the university unites the natural and engineering sciences with the humanities, social sciences and medicine. This wide range of disciplines is a special feature, facilitating interdisciplinarity and transfer of science to society. As a modern employer, it offers attractive working conditions to all employees in teaching, research, technology and administration. The goal is to promote and develop their individual abilities while empowering everyone to reach their full potential. TUD embodies a university culture that is characterized by cosmopolitanism, mutual appreciation, thriving innovation and active participation. For TUD diversity is an essential feature and a quality criterion of an excellent university. Accordingly, we welcome all applicants who would like to commit themselves, their achievements and productivity to the success of the whole institution.

At the Faculty of Physics, Institute of Applied Physics, the Chair of Ultrafast Microscopy and Photonics affiliated with the Cluster of Excellence “Complexity and Topology in Quantum Matter” (ct.qmat) offers two positions as

Research Associate / Postdoc (m/f/x)
(subject to personal qualification employees are remunerated according to salary group E 13 TV-L)

Research area: Fabrication and spectroscopy of van der Waals semiconductors

Terms: 2-year appointment (with the option of extension for one additional year) starting at the earliest possible date

The period of employment is governed by the Fixed-Term Research Contracts Act (Wissenschaftszeitvertragsgesetz – WissZeitVG). The positions offer the chance to obtain further academic qualification.

Our research is focused on studying interactions of electronic many-particle states in low-dimensional semiconductors using a variety of optical techniques from linear and non-linear spectroscopy to time-resolved microscopy. We address an expanded material base of artificially assembled nanostructures to develop fundamental understanding and advanced concepts for manipulation and control of light-emitting excitations. Our aim is to address technologically motivated, critical questions from the basic science perspective. For more information regarding our research please visit the web page of the institute https://tu-dresden.de/mn/physik/iap/photonics.

Tasks:
- fabrication and preparation of complex heterostructures involving van der Waals semiconductors in combination with a variety of nanomaterial systems,
- fabrication and study of multi-layer structures with electrical contacts,
- optical studies of two-dimensional inorganic and hybrid materials, as well as 2D/1D/0D heterostructures,
- setup and operation of optical experiments including, but not limited to, magneto-optical microscopy, white-light spectroscopy, time-resolved spectroscopy, and atomic-force microscopy,
- analysis and communication of the research findings.

Requirements: university and PhD degree in physics or similar discipline; interest in experimental condensed matter research; high self-motivation; excellent command of English language; excellent computer skills; expertise in optical and time-resolved spectroscopy; ready-to-use and up-to-date knowledge of the field of two-dimensional van der Waals materials and quantum well systems.
What we offer: We will be happy to welcome you to an international team of highly motivated researchers to be part of a highly active scientific field. We further offer

- access to state-of-the-art facilities of the group and the institute,
- collaborations and networking with leading research groups in the field,
- promotion of gender equality and family-friendly work environment.

TUD strives to employ more women in academia and research. We therefore expressly encourage women to apply. The University is a certified family-friendly university and offers a Dual Career Service. We welcome applications from candidates with disabilities. If multiple candidates prove to be equally qualified, those with disabilities or with equivalent status pursuant to the German Social Code IX (SGB IX) will receive priority for employment.

Your application *(in English or German)* should include: motivation letter, CV, and copies of degree certificates. Please submit your detailed application with the documents by **September 11, 2023** (stamped arrival date of the university central mail service or the time stamp on the email server of TUD applies) via the TUD SecureMail Portal https://securemail.tu-dresden.de by sending it as a single pdf file to alexey.chernikov@tu-dresden.de or to: TU Dresden, Fakultät Physik, Institut für Angewandte Physik, Professur für Ultraschnelle Mikroskopie und Photonik, Herrn Prof. Alexey Chernikov, Helmholtzstr. 10, 01069 Dresden, Germany. Please submit copies only, as your application will not be returned to you. Expenses incurred in attending interviews cannot be reimbursed.

Reference to data protection: Your data protection rights, the purpose for which your data will be processed, as well as further information about data protection is available to you on the website: https://tu-dresden.de/karriere/datenschutzhinweis.